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The moiré superlattices attract growing interest for holding exotic physics due to their fascinating
properties from electronics to photonics. Much attention has been focused on the localization effect for
waves in the flat band regime or the delocalization effect from the strongly dispersive band feature. Here,
we study the weakly dispersive band in between the two above scenarios in a one-dimensional synthetic
frequency moiré superlattice and observe the wave packet distributions therein toward novel frequency
comb generation. Mode spacing in the spectral wave packet is reduced compared to the free spectral range
of individual rings due to the mode couplings from the unequal sublattice periods of the synthetic moiré
lattice. We unveil that the optimal compact frequency comb generation occurs in the weakly dispersive
regime holding simultaneously uniform power distribution and broad frequency spanning in our
experiment, benefiting from the interplay between the band flatness and power uniformity of mode
distribution. Our results study the fundamental physics of the weakly dispersive moiré band in the synthetic
frequency dimension and also show a new way for the future compact frequency comb generation in
on-chip devices with small footprint size.
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Triggered by the rapid research progress on the twisted
bilayer graphene [1–3], the photonic moiré superlattices
manifest as an important platform for exploring novel
physics and distinct functionalitieswith theversatile degrees
of freedom of light and flexible photonic geometries [4,5].
This emerging field has enabled the realizations of optical
solitons [6,7], light trapping [8], effective gauge field [9],
far-field coupling [10], and topological polaritons [11],
showing vivid research interests in the photonic society.
Recently, it has been proposed that one can overlap two one-
dimensional (1D) sublattices with unequal (mismatching)
spatial periodicities to construct a so-called 1D moiré
superlattice [12–15]. Such construction requires relatively
simple geometric configurations but still can hold the similar
moiré physics, which has then quickly been demonstrated in
several photonic platforms, including chirped waveguide
gratings [16], quasicrystal integrated circuits [17], silicon
photonic nanowires [18], and bilayer photonic crystals [19].
Such a configuration can be further simplified according
to a recent theoretical proposal by utilizing the synthetic

frequency dimension [20]. In both two-dimensional and
one-dimensional moiré superlattices, one fundamental fea-
ture is the existence of the flat band at certainmagic angles or
periodicity mismatching [1,19], which shows great impor-
tance in its capability for confining the light strongly. Such a
unique feature triggers further studies in photonics, with
distinguished wave dynamics of localization and delocal-
ization of light [21–25], demonstrating novel applications
such as slow light [26] and magic-angle lasers [27,28].
However, to date, studies on the moiré physics are mainly
focused on the flat band for the strong light confinement,
which exhibits distinct difference from the strongly dis-
persive band with the corresponding profile of light spread-
ing in the spatial geometry [29–33]. The physics between the
two scenarios, where a weakly dispersive band exists, has
not brought much attention yet.
In this work, we explore the intrinsic physics of the

weakly dispersive band in a 1D synthetic moiré superlattice,
which can generate an optimal compact electro-optic (EO)
frequency comb with mode spacing reduction. Such syn-
theticmoiré superlattice is experimentally constructed along
the frequency axis of light by coupling two 1D synthetic
sublattices at different frequency periodicities [20], each of
which is built in a single ring resonator under the resonant
modulation [34–40]. The flat band and strongly dispersive
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band structures corresponding to the moiré physics are
studied in the synthetic frequency dimension, where we
show the spectral wave packet control and the resulting
frequency comb generation compared to their spatial coun-
terparts [29–33]. Mode spacing is reduced due to the mode
couplings from the unequal sublattice periods of the syn-
thetic moiré superlattice, where the optimal compact EO
comb is found in the weakly dispersive band regime
combining both uniform power distribution and broad
frequency spanning.
Our experiments are performed in two coupled ring

resonators (A and B) as shown in Fig. 1(a). The length of
ring A (B) satisfies the relation of LAðBÞ ¼ L=NAðBÞ, where
L is a length constant,NA andNB are two coprime integers.
In the absence of group velocity dispersion, each ring
supports a set of equally spaced resonant modes with
frequencies ωAðBÞ ¼ ω0 � nΩRAðRBÞ, where ΩRAðRBÞ ¼
2πvg=LAðBÞ ¼ NAðBÞΩ is free spectral range (FSR) of ring
A (B) with Ω ¼ 2πvg=L, ω0 is the central resonant
frequency, n is an integer, and vg is the group velocity.
Each ring is under EO phase modulation in the form of
αðβÞ cos½ΩAðBÞtþ ϕAðBÞ�, where ΩAðBÞ, αðβÞ, and ϕAðBÞ
denote the modulation frequency, strength, and phase of the
EO modulator (EOM) in ring A (B), respectively. For a
single ring A (B), a 1D synthetic sublattice can be formed
along the frequency dimension when we apply the resonant
modulation, i.e., ΩAðBÞ ¼ ΩRAðRBÞ. By coupling the two
individual sublattices in both rings through fiber coupler at
coupling coefficient K (equaling to the square of the
coupling rate of κ) [41], one constructs 1D synthetic moiré
superlattice as sketched in Fig. 1(b) [20]. Namely, mod-
ulations in two EOMs connect resonant modes in both
rings to form two layers of synthetic frequency sublattices
at mismatching periods, while the coupling between two
rings gives the connectivity between the two layers. The
resulting larger lattice unit cell is NBΩA ¼ NAΩB ¼
NANBΩ, and the number of resonant modes in each unit
cell is N ¼ NA þ NB.
The optical field of the resonant modes in one ring can

couple into another ring due to the unequal periods of the two
frequency sublattices constructing the synthetic moiré super-
lattice, which leads to the excitation of nonresonant modes
[seeFig. 1(b)withΩA∶ ΩB ¼ 5∶2, for example]. The energy
of these nonresonant modes can further get converted by the
EOM to other modes in the synthetic moiré superlattice.
When a continuous wave (CW) pump laser centered at ω0

(red line) is injected into ring A, it is foreseeable that the
output signal carries the EOcomb [42,43], including both the
resonant (orange lines) and nonresonant modes (blue and
yellow lines), i.e., a compact EO comb with mode spacing
reduction (up to Ω as the highest common factor of both
FSRs of two rings).
We take the transfer-matrix method to rigorously model

the system [20,44], while a simplified tight-binding
Hamiltonian is also given in Supplemetnal Material [41]

for better illustrating the moiré physical picture in Fig. 1(b).
The theoretical band structures exhibit typical strongly
dispersive band to flat band transition when increasing
the coupling coefficient K [see Fig. 1(d)]. To quantify the
flatness of the band under a given K, we define a flatness
index (F), which is reciprocal to the averageweighted group
velocity for mode spreading in the frequency dimension for
all bands, v̄, i.e., F ¼ 1=v̄ [41]. v̄ðFÞ is normalized by the
value at K ¼ 0 with v̄max ¼ 1 ðFmin ¼ 1Þ, which decreases
(increases) with K as shown in Fig. 1(e). We define the
strongly dispersive (flat) band regime in this work as K
locating within the region where the decrease of v̄ is smaller
than 5 dB (larger than 13 dB), leading to K ≤ 0.18
(K ≥ 0.72) [41]. The input light field can (cannot) get
efficient spreading in the frequency dimension, resulting
in the delocalization (localization) effect of frequency
modes, respectively. In between two scenarios, the system
locates at the weakly dispersive regime with 0.18 < K <
0.72 as labeled by the yellow shading in Fig. 1(e).
In the experiment, we implement the proposal based on

two fiber ring resonators with tunable coupling coefficient
K [41,45,46]. We choose the length of ring A (B) as
LA ¼ 20.4 m ðLB ¼ 51 mÞ, corresponding to a FSR of
ΩRA¼2π×10MHz (ΩRB¼2π×4MHz), i.e., ΩRA∶ΩRB ¼
5∶2. Figure 2 plots the measured band structures with
varying K, which balances the total losses in both rings to
the best [41]. For ΩA∶ΩB ¼ 5∶2, each unit cell of the
synthetic moiré superlattice contains two resonant modes
of ring A [see Fig. 1(b)], which leads to the periodicity of the
output transmission spectrumalong the frequency dimension
beingNANBΩ ¼ 2ΩA. Therefore, in our measurements [41]
two groups of bands separated by ΩA can be observed
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FIG. 1. (a) Schematic of the experiment. (b) The system forms a
1D synthetic moiré superlattice in the frequency dimension. Solid
circles (white dashed circles) represent resonant (nonresonant)
modes. (c) The generated compact EO frequency comb with
mode spacing Ω. (d) Theoretical band structures calculated from
the transfer-matrix method under different K, with α ¼ β ¼ 1.2,
ϕA ¼ ϕB ¼ π. kf is the wave vector reciprocal to the frequency
dimension. (e) Calculated F; v̄; σ versus K. The yellow shading
labels the weakly dispersive regime within 0.18 < K < 0.72.
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simultaneously, as scaled in the vertical axes of Fig. 2.
Note that the measured band structures correspond to the
theoretical bands in Fig. 1(d) projected to both the resonant
and nonresonant modes in ring A [20,37,47]. Without the
coupling between two rings (K ¼ 0), the two groups of
band structures exhibit the same sinusoidal shapes [see
Fig. 2(a)] as the ring A decoupled from ring B. The band
structure difference manifests once the coupling is turned
on [see Figs. 2(b)–2(f)]. All bands exhibit strongly
dispersive features with relatively small coupling coeffi-
cients [see Figs. 2(b) and 2(c)]. On the contrary, under the
strong coupling (K ¼ 0.88), all bands become highly flat
[see Fig. 2(f)]. In between two scenarios, the system holds
a weakly dispersive band [see Figs. 2(d)–2(e)]. The
measured band feature with varied K is in agreement with
the theoretical results when the system locates at different
dispersive regimes [see Figs. 1(d)–1(e)].
We further measure the output EO frequency comb to

reflect the optical wave packet in the frequency dimension.
We inject the light at the single resonant frequency ω0, and
record the output mode distribution by using the fast Fourier
transform function of the oscilloscope. In Fig. 3, we show
the measured EO combs with different coupling coeffi-
cients. At first glance, one may find that the output spectrum
contains not only the intrinsic resonant modes of ring A but
the nonresonant modes from mode coupling process illus-
trated in Fig. 1(b). We define the comb including only the
resonantmodes of ringA as the first sequenceEOcombwith
mode spacing ΩA ¼ 2π × 10 MHz [orange lines in Fig. 1
(c)] and the comb including only the nonresonant modes of
ringAas the high-order sequenceEOcomb [blue and yellow
lines in Fig. 1(c)]. The first and high-order sequence combs
thus construct a compact EO comb output with the mode
spacing at Ω ¼ 2π × 2 MHz in the synthetic moiré super-
lattice with K ≠ 0 [see Figs. 3(b)–3(f)], which is 5 times
denser than the first sequence EO comb. To illustrate the
dynamic process of combdistributions under differentK, we
define quantities R1 and R2 as the frequency spannings that
the first sequence and high-order sequence combs can
spread, marking positions of the maximum frequency range
where the normalized powers of the first and high-order
sequence combs larger than −70 dB, respectively. We label

the power peaks of the first sequence comb by blue dots in
Fig. 3. As for the high-order sequence comb, we calculate
the average powers for every group of four comb lines [i.e.,
the blue and yellow lines in Fig. 1(c)] and mark them by red
circles. The frequency spanning of the compact EO comb
(defined by R) is determined by the minimum value of R1

andR2, i.e.,R ¼ minðR1; R2Þ. In general,R1 is related to the
dispersion of bands of the synthetic moiré superlattice in the
system (represented by v̄ or F), the modulation strength of
the RF signal, and the loss in two rings, where the last two
parameters are fixed during experiment [41]. In addition to
the above parameters, R2 is also affected by the power
uniformity of mode distribution within one unit cell, which
can be characterized by the variance of eigenstate distribu-
tion (σ) as plotted in Fig. 1(e), with σ ¼ 0 indicating the
perfect uniform distribution [41].
Figure 3 shows that, in general, R1 decreases when

increasing K, while R2 keeps growing until reaching the
maximum range. When there is no coupling between two
rings (K ¼ 0), the system degrades to a single-ring model
and the output spectrum only includes the first sequence
comb, experiencing broad frequency spanning with R1 ¼
2π × 530 MHz due to the strong dispersion of single ring A
[see Fig. 3(a)]. The high-order sequence comb appears
when the coupling is applied on, which only spreads to a
small frequency range under relatively weak K ¼ 0.01
(R2 ¼ 2π × 110 MHz) for the very bad power uniformity
[see Fig. 3(b)]. The widest frequency spanning for the
high-order sequence comb takes place at K ¼ 0.12,

Afk

A
/

Afk
2 40 2 40

0

0.5

A
/

(a)

(f)

(c)

(e)

(b)

(d)

0.5

0K

0.5K0.32K

0.12K0.01K

0.88K

Afk
2 40

FIG. 2. Experimentally observed band structures with different
coupling coefficients (a) K ¼ 0, (b) K ¼ 0.01, (c) K ¼ 0.12,
(d) K ¼ 0.32, (e) K ¼ 0.5, and (f) K ¼ 0.88.

Frequency (MHz)

4000 300200 600100 500

0

80

60

40

20

0

80

60

40

20

0

60

40

20

N
o

rm
al

iz
ed

 P
o

w
er

 (
d

B
)

(a)

(e)

(d)

(c)

(b)

80

(f)

Frequency (MHz)

0040 300200 006100 500

30

30

R

R
R

R

R

R

R

R

R

R

R

0

80

40

10 3020

0

80

40

10 20

0

80

40

10 20

0

80

40

10 3020

0

80

40

10 3020

0

80

40

10 3020
Frequency (MHz)

Frequency (MHz)

Frequency (MHz) Frequency (MHz)

Frequency (MHz)

Frequency (MHz)

0.12K

0.32K

0.88K

0.5K

0K

0.01K

FIG. 3. Experimentally measured comb spectra with varied
coupling coefficients (a) K ¼ 0, (b) K ¼ 0.01, (c) K ¼ 0.12, (d)
K ¼ 0.32, (e) K ¼ 0.5, and (f) K ¼ 0.88. The inserted figures
show the zoom-in distributions. The blue dots label the normal-
ized power peaks of the first sequence comb, while the average
powers for every group of four comb lines of the high-order
sequence comb are marked by red circles. The two blue and red
solid circles denote to R1 and R2.

PHYSICAL REVIEW LETTERS 134, 083803 (2025)

083803-3



with R2 ¼ 2π × 310 MHz and R1 ¼ 2π × 440 MHz [see
Fig. 3(c)]. The extension of the compact EO comb in
Figs. 3(a)–3(c) benefits from the delocalization effect of the
frequency modes since the system locates at the strongly
dispersive band regimes under those occasions, as well as
the increasing power uniformity (the decreasing variance
σ) [see Figs. 1(e) and 2(a)–2(c)]. Both R1 and R2 narrow
down if further increasing the coupling coefficient, but
the power peaks of the first and high-order sequence combs
get closer resulting from the simultaneous increase of flat-
ness and power uniformity [see Figs. 1(e) and 3(d)–3(f)].
Under strong coupling (K ¼ 0.88), the two sequence
combs possess nearly the same powers, but at the cost of
R1 and R2 reducing to 2π × 60 MHz and 2π × 80 MHz,
resulting from the localization effect of frequency modes
where the system holds flat band feature and large power
uniformity [see Figs. 2(f) and 3(f)]. At K ¼ 0.32, where the
system is in the weakly dispersive regime, the two sequence
combs have similar power distributions while holding a
relatively large frequency spanning (R1 ¼ 2π × 370 MHz
and R2 ¼ 2π × 290 MHz) [see Figs. 2(d) and 3(d)], indicat-
ing an optimal cascaded EO comb generation with
R ¼ 2π × 290 MHz. Such phenomenon results from the
balance between the system’s dispersion and power uniform-
ity of mode distribution, i.e., F vs σ, highlighting the unique
physics from the weakly dispersive band in the 1D synthetic
moiré superlattice. The enlarged frequency mode distribu-
tions inFig. 3 give amore evident picture that the powersof all
the mode lines gradually flatten due to the stronger moiré
localization effect of frequencymodeswith the increase of the
coupling coefficient. We also simulate the projected band
structures and the correspondingmode distributions by using
the transfer-matrix method, which all match well with the
experimentalmeasurement [41].As a side note, the roughness
of the experimental results comes from theamplified emission
noise of the semiconductor optical amplifier in rings, which
might be reduced if the scheme is migrated into on-chip
platforms. In addition, the localization effect of frequency
modes in Fig. 3(f) means that the light field confines in finite
frequency modes in the frequency dimension, which is
mathematically equivalentwith light localization in real space
configuration that light field confines in finite size or lattice
sites [21–23]. If the third-order nonlinearity for the four-wave
mixingprocess is induced [40], these nonresonantmodesmay
participate the nonlinear process, which makes the frequency
mode localization be able to increase the effective non-
linearity of the system.
To further exhibit the use of the synthetic moiré super-

lattice in designing the compact EO comb generation, we
also perform the experiment by applying a combined RF
signal 2.5½cosðΩAtÞ þ cosðΩBtÞ� on the single ring Awhile
disconnecting ring B [see Figs. 4(a1)–4(a2)], with other
experimental conditions unchanged. One sees that a similar
EO comb with mode spacing 2π × 2 MHz is generated, but
the frequency range of the high-order sequence comb is less

than 2π × 200 MHz as these associated modes are nonreso-
nant in the single ring A. Moreover, further reducing the
mode spacing can be achieved by coupling two rings with a
smaller length ratio. As an illustration, we construct two
coupled ring A and ring C with lengths LA ¼ 20.4 m and
LC ¼ 22.6 m (NA∶ NC ¼ 10∶9 and resonant modulations
at ΩA ¼ 2π × 10 MHz, ΩC ¼ 2π × 9 MHz). Figures 4(b1)
and 4(b2) show the output spectrum under the coupling
K ¼ 0.32, where a compact EO comb with mode spacing
2π × 1 MHz is obtained, showing the smaller mode spacing
in an order of magnitude than FSRs of rings.
In conclusion, we study the weakly dispersive band in the

1D synthetic moiré superlattice and show a compact EO
frequency comb generation with mode spacing reduction.
Flat to strongly dispersive band transition and the wave
packets in the frequency domain are studied in the experi-
ment. The optimal compact frequency comb can be found in
the weakly dispersive regime, holding both uniform power
distribution andbroad frequency spanning. The phenomenon
benefits from the interplay between band flatness and power
uniformity of mode distribution from the moiré physical
picture [41]. Our Letter provides a simple experimental
platform for studying the moiré band transition regime
[21–23]. It also offers insight in generating a more compact
frequency comb with the small mode spacing otherwise
requiring the ring with the larger scale, highlighting the
proof-of-principle potential toward the on-chip compact
comb generation with limited footprint size [48–56].
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and S. Zhang, Moiré fringe induced gauge field in photon-
ics, Phys. Rev. Lett. 125, 203901 (2020).

[10] J. Guan, J. Hu, Y. Wang, M. J. H. Tan, G. C. Schatz, and
T.W. Odom, Far-field coupling between moiré photonic
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moiré excitons, Nano Lett. 23, 4627 (2023).

[34] L. Yuan and S. Fan, Bloch oscillation and unidirectional
translation of frequency in a dynamically modulated ring
resonator, Optica 3, 1014 (2016).

PHYSICAL REVIEW LETTERS 134, 083803 (2025)

083803-5

https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26154
https://doi.org/10.1021/acsnano.0c10435
https://doi.org/10.1021/acsnano.0c10435
https://doi.org/10.1103/PhysRevB.103.214311
https://doi.org/10.1103/PhysRevB.103.214311
https://doi.org/10.1126/science.adg0014
https://doi.org/10.1126/science.adg0014
https://doi.org/10.1038/s41467-019-12327-x
https://doi.org/10.1038/s41566-020-0679-9
https://doi.org/10.1038/s41566-020-0679-9
https://doi.org/10.1063/5.0105365
https://doi.org/10.1063/5.0105365
https://doi.org/10.1103/PhysRevLett.125.203901
https://doi.org/10.1038/s41565-023-01320-7
https://doi.org/10.1038/s41586-020-2359-9
https://doi.org/10.1038/srep19701
https://doi.org/10.1103/PhysRevLett.125.166803
https://doi.org/10.1103/PhysRevLett.125.166803
https://doi.org/10.1103/PhysRevLett.126.036803
https://doi.org/10.1364/OPTICA.498089
https://doi.org/10.1364/OPTICA.498089
https://doi.org/10.1364/OPTICA.379620
https://doi.org/10.1515/nanoph-2020-0049
https://doi.org/10.1021/acsphotonics.1c01800
https://doi.org/10.1021/acsphotonics.1c01800
https://doi.org/10.1103/PhysRevResearch.4.L032031
https://doi.org/10.1103/PhysRevResearch.4.L032031
https://doi.org/10.1103/PhysRevLett.130.143801
https://doi.org/10.1038/s41586-019-1851-6
https://doi.org/10.1038/s41586-019-1851-6
https://doi.org/10.1364/OE.434281
https://doi.org/10.1364/OE.434281
https://doi.org/10.1103/PhysRevA.108.043711
https://doi.org/10.1103/PhysRevA.108.043711
https://doi.org/10.1103/PhysRevLett.132.246402
https://doi.org/10.1103/PhysRevLett.132.246402
https://doi.org/10.1038/s41566-023-01350-6
https://doi.org/10.1038/s41566-023-01350-6
https://doi.org/10.1038/s41377-021-00601-x
https://doi.org/10.1038/s41565-021-00956-7
https://doi.org/10.1038/s41586-023-06789-9
https://doi.org/10.1038/s41586-023-06789-9
https://doi.org/10.1021/acs.nanolett.9b05117
https://doi.org/10.1021/acs.nanolett.9b05117
https://doi.org/10.1103/PhysRevLett.126.223601
https://doi.org/10.1103/PhysRevLett.126.223601
https://doi.org/10.1038/s41377-022-00977-4
https://doi.org/10.1038/s41377-022-00977-4
https://doi.org/10.1038/s41377-022-00838-0
https://doi.org/10.1038/s41377-022-00838-0
https://doi.org/10.1021/acs.nanolett.3c01160
https://doi.org/10.1364/OPTICA.3.001014


[35] A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, and S. Fan,
A single photonic cavity with two independent physical
synthetic dimensions, Science 367, 59 (2020).

[36] K. Wang, A. Dutt, C. C. Wojcik, and S. Fan, Topological
complex-energy braiding of non-Hermitian bands, Nature
(London) 598, 59 (2021).

[37] G. Li, L. Wang, R. Ye, Y. Zheng, D.-W. Wang, X.-J. Liu, A.
Dutt, L. Yuan, and X. Chen, Direct extraction of topological
Zak phase with the synthetic dimension, Light Sci. Appl. 12,
81 (2023).

[38] I. Heckelmann, M. Bertrand, A. Dikopoltsev, M. Beck, G.
Scalari, and J. Faist, Quantum walk comb in a fast gain laser,
Science 382, 434 (2023).

[39] A. Senanian, L. G. Wright, P. F. Wade, H. K. Doyle, and
P. L. McMahon, Programmable large-scale simulation of
bosonic transport in optical synthetic frequency lattices,
Nat. Phys. 19, 1333 (2023).

[40] N. Englebert, N. Goldman, M. Erkintalo, N. Mostaan, S.-P.
Gorza, F. Leo, and J. Fatome, Bloch oscillations of
coherently driven dissipative solitons in a synthetic dimen-
sion, Nat. Phys. 19, 1014 (2023).

[41] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.134.083803 for more
details on the theory, simulations, experimental setup,
and additional figures, which includes Refs. [20,42–46].

[42] A. Rueda, F. Sedlmeir, M. Kumari, G. Leuchs, and H. G. L.
Schwefel, Resonant electro-optic frequency comb, Nature
(London) 568, 378 (2019).

[43] R. Zhuang, K. Ni, G. Wu, T. Hao, L. Lu, Y. Li, and
Q. Zhou, Electro-optic frequency combs: Theory, character-
istics, and applications, Laser Photonics Rev. 17, 2200353
(2023).

[44] Q. Lin, M. Xiao, L. Yuan, and S. Fan, Photonic Weyl point
in a two-dimensional resonator lattice with a synthetic
frequency dimension, Nat. Commun. 7, 13731 (2016).

[45] A. Dutt, M. Minkov, Q. Lin, L. Yuan, D. A. B. Miller, and S.
Fan, Experimental band structure spectroscopy along a
synthetic dimension, Nat. Commun. 10, 3122 (2019).

[46] G. Li, Y. Zheng, A. Dutt, D. Yu, Q. Shan, S. Liu, L. Yuan, S.
Fan, and X. Chen, Dynamic band structure measurement in
the synthetic space, Sci. Adv. 7, eabe4335 (2021).

[47] G. Li, L. Wang, R. Ye, S. Liu, Y. Zheng, L. Yuan, and X.
Chen, Observation of flat-band and band transition in the
synthetic space, Adv. Photonics 4, 036002 (2022).

[48] Y. Hu, M. Yu, N. Sinclair, D. Zhu, R. Cheng, C. Wang, and
M. Lončar, Mirror-induced reflection in the frequency
domain, Nat. Commun. 13, 6293 (2022).

[49] U. A. Javid, R. Lopez-Rios, J. Ling, A. Graf, J. Staffa, and
Q. Lin, Chip-scale simulations in a quantum-correlated
synthetic space, Nat. Photonics 17, 883 (2023).

[50] H. X. Dinh, A. Balčytis, T. Ozawa, Y. Ota, G. Ren, T. Baba,
S. Iwamoto, A. Mitchell, and T. G. Nguyen, Reconfigurable
synthetic dimension frequency lattices in an integrated
lithium niobate ring cavity, Commun. Phys. 7, 185 (2024).

[51] M. Soltani, A. Matsko, and L. Maleki, Enabling arbitrary
wavelength frequency combs on chip, Laser Photonics Rev.
10, 158 (2016).

[52] M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C.
Reimer, R. Zhu, J. M. Kahn, and M. Lončar, Broadband
electro-optic frequency comb generation in a lithium nio-
bate microring resonator, Nature (London) 568, 373 (2019).

[53] M. Zhang, C. Wang, Y. Hu, A. Shams-Ansari, T. Ren, S.
Fan, and M. Lončar, Electronically programmable photonic
molecule, Nat. Photonics 13, 36 (2019).

[54] Y. Hu, M. Yu, B. Buscaino, N. Sinclair, D. Zhu, R. Cheng,
A. Shams-Ansari, L. Shao, M. Zhang, J. M. Kahn et al.,
High-efficiency and broadband on-chip electro-optic fre-
quency comb generators, Nat. Photonics 16, 679 (2022).

[55] R. Niu, S. Wan, W. Li, P.-Y. Wang, F.-W. Sun, F. Bo, J. Liu,
G.-C. Guo, and C.-H. Dong, An integrated wavemeter based
on fully-stabilized resonant electro-optic frequency comb,
Commun. Phys. 6, 329 (2023).

[56] Q.-X. Ji, P. Liu, W. Jin, J. Guo, L. Wu, Z. Yuan, J. Peters, A.
Feshali, M. Paniccia, J. E. Bowers et al., Multimodality
integrated microresonators using the moiré speedup effect,
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